skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kaduk, James A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Solid-state batteries are attractive energy storage systems as a result of their inherent safety, but their development hinges on advanced solid-state electrolytes (SSEs). Most SSEs remain largely confined to single-anion systems (e.g., sulfides, oxides, halides, and polymers). Through mixed-anion design strategy, we develop crystalline Li3Ta3O4Cl10(LTOC) and its derivatives with excellent ionic conductivities (up to 13.7 millisiemens per centimeter at 25°C) and electrochemical stability. The LTOC structure features mixed-anion spiral chains, consisting of corner-shared oxygen and terminal chlorine atoms, which induces continuous “tetrahedron-tetrahedron” Li-ion migration pathways with low energy barriers. Additionally, LTOC demonstrates holistic cathode compatibility, enabling solid-state batteries operation at 4.9 volts versus Li/Li+and low temperature, down to −50°C. These findings describe a promising class of superionic conductors for high-performance solid-state batteries. 
    more » « less
    Free, publicly-accessible full text available October 9, 2026
  2. Abstract Organofunctionalized tetranuclear clusters [(MIICl)2(VIVO)2{((HOCH2CH2)(H)N(CH2CH2O))(HN(CH2CH2O)2)}2] (1, M=Co,2: M=Zn) containing an unprecedented oxometallacyclic {M2V2Cl2N4O8} (M=Co, Zn) framework have been prepared by solvothermal reactions. The new oxo‐alkoxide compounds were fully characterized by spectroscopic methods, magnetic susceptibility measurement, DFT and ab initio computational methods, and complete single‐crystal X‐ray diffraction structure analysis. The isostructural clusters are formed of edge‐sharing octahedral {VO5N} and trigonal bipyramidal {MO3NCl} units. Diethanolamine ligates the bimetallic lacunary double cubane core of1and2in an unusual two‐mode fashion, unobserved previously. In the crystalline state, the clusters of1and2are joined by hydrogen bonds to form a three‐dimensional network structure. Magnetic susceptibility data indicate weakly antiferromagnetic interactions between the vanadium centers [Jiso(VIV−VIV)=−5.4(1); −3.9(2) cm−1], and inequivalent antiferromagnetic interactions between the cobalt and vanadium centers [Jiso(VIV−CoII)=−12.6 and −7.5 cm−1] contained in1. 
    more » « less